
Theoretical & Practical Approaches to Git-driven
Infrastructure

Guest Lecture
Cloud Computing
Frankfurt University of Applied Sciences

3rd December 2024

GitOps

About

• Master in Theoretical and Computational Chemistry
• Over 10 years of experience in IT industry
• Leading and working together with a team of cloud-,

kubernetes engineers

Domenico Caruso
Team Lead – Cloud Native
Engineering
Claranet GmbH

About

• Bachelor in Computer Science
• Over 5 years of experience in IT industry
• Working together with cloud-native and kubernetes engineers
• Kubernetes, GitOps, Automation

Kai Schäfer
Senior Cloud Native Engineer –
Claranet GmbH

About the Team

• Multiple teams embracing software engineering,
cloud based and native workload, linux & windows

• Several platforms: AWS, GCP, Azure and on-
premise

• International: based in Germany, Spain, India with
over 6 nationalities and languages

• Annual team and family event

At a glance

• Founded in 1996
• Owner- managed
• 600 Mio € annualised revenues
• More than 10.000 B2B customers
• Global reach with operations in 11 counties
• More than 3.500 employees

We are experts for modernizing and running
critical applications, data and infrastructures 24/7

About: Claranet group

Highly accredited with cloud vendors
Compliance

ISO
27001:2017
27017:2015
27018:2014

ISO
22301:2019

ISO
9001:2015

Zertifizierungen und Partnerschaften beziehen sich u.U.
nur auf einzelne Unternehmen der Claranet Gruppe

Partnerships

Managed Services
Microsoft 365
Security / Endpoint Management
Identity Management

Managed Services
Consulting Services

Business Intelligence
Security Services

SAP on Cloud

Security Assessments
Penetration Testing & Red Teaming
Security & Compliance Consulting
SOC Services: EDR, MDR
Penetration Testing as a Service

Microsoft
SAP
AWS
Linux
Cyber Security

Cloud Migration
Cloud Management

Managed Applications

Cloud Connect
MPLS
IPsec
SSL

Network Services
Managed Container Applications

Managed Kubernetes
DevOps Automation

Cloud Native Strategies

AWS, GCP, Azure
Private Cloud
Hybrid Cloud

Claranet ServicesClaranet Service Portfolio

Cloud Platforms

Cloud Services Cyber Security

Cloud Native

Training

Workplace & CollaborationSAP

24/7
Business SLA, Monitoring, Reporting,

Service Management

SAP

What expects you in this lecture?

• GitOps simplifies infrastructure and application deployments by using Git as the single source of truth.
This lecture explores the history of infrastructure management, the rise of GitOps, and its unique
advantages over traditional DevOps

• Lecture Goals:
• Understand the core concepts of GitOps.
• Identify the abstractions it introduces.
• Evaluate if the added complexities are beneficial

Agenda
• Challenges of modern IT
• How did traditional IT worked?
• Demo
• How can git help us?
• gitOps
• Demo

Poll

Who heard of GitOps outside of this lecture?

Who gained real-world experience with gitOps?

@theunsteady5

https://unsplash.com/photos/4V1dC_eoCwg

What challenges in modern IT?

Frequent Deployments
In today’s fast-paced environment, teams need to deploy new
features, updates, and fixes rapidly

Frequent deployments increase the risk of errors and
inconsistencies

Consistency
Ensuring that development, staging, and production environments
are identical is essential
Differences in configurations can lead to unexpected issues in
production

Traceability and Control
With many team members making changes, it’s crucial to know
who changed what, when, and why.
Without good traceability, troubleshooting and accountability suffer

What challenges in modern IT?

• Modern applications can have
hundreds of microservices
making up the whole
application

• If you want to keep high level
of releases, consistency and
traceability you can’t work
the same way IT used to
work until few years ago

What are then our goals?

Agility

Agility emphasizes rapid, iterative
development and delivery to meet
evolving user needs and market
demands.
Teams aim to quickly respond to
feedback and continuously improve
software.

Parallelism

In modern development, teams work on
multiple features and services
simultaneously.
This parallelism speeds up innovation
but also demands strong coordination to
avoid conflicts.

Scalability

Microservices are designed to be
independently scalable, allowing each
service to scale up or down based on
demand.
This differs from a monolithic
application on a single VM, where
scaling is often limited to the entire
system.
Managing this dynamic scaling
manually is inefficient and impractical,
especially at the pace and scale
required by modern applications.

Resilience and Fault
Isolation
In a microservices architecture, each
service operates independently, so
failures in one service don’t necessarily
bring down the entire system.
However, this only works well if services
can be independently managed,
deployed, and recovered.
Traditional approaches that treat the
system as a single, unified block are
less suited to ensuring this level of
resilience, as they lack the flexibility
needed to handle failures in isolated
parts of the system.

What is Ops and what is Git?

Traditional Ops (Operations)
• Silos, the old-fashioned way

- Developers want to change much and often
- Operators don’t touch it if it works
- Limited release cycle

Traditional Ops (Operations)

Manual Configuration and
Deployment

Traditionally, "Ops" involved manually setting up servers, networks, and storage.
Deploying applications often required hands-on configuration

Reactive Maintenance and
Troubleshooting

Ops teams were often seen as those jumping in to fix issues as they arose in
production. Monitoring and responding to system alerts was a major focus, with
a primary goal of ensuring uptime and minimizing downtime.

Separate from Development Historically, Operations and Development were often siloed. Developers built
features, and Operations deployed and maintained them.

Focus on Stability over Speed Operations traditionally prioritized stability, with changes happening cautiously to
avoid disruptions.

Challenges of traditional Ops
Lack of Traceability
• With manual processes and ad-

hoc configurations, it’s difficult to
track what changes were made,
when, and by whom

No Drift Detection
• Configuration drift, where the

actual environment deviates from
the intended configuration, is a
common issue

Inconsistent
Environments
• Manually configured environments

often lead to inconsistencies
between development, staging,
and production

Siloed Teams and
Communication Barriers
• Traditional operations often keep

development and operations
teams in separate silos, leading to
poor communication and
misaligned goals

Difficulty Scaling
• Scaling infrastructure quickly to

meet demand is challenging when
configurations are handled
manually

Limited Rollback and
Recovery Options
• When issues arise, rolling back to

a previous state can be difficult
without a version-controlled
approach

DEMO:
traditional Ops

What is Git?

Git – What is it?

Version Control System
Git is a distributed version control system that
helps teams manage changes in code

Distributed and Collaborative
Git enables each user to have a local copy of
the repository

Commit History and Branching
Git records every change as a “commit” and
allows for branching—creating separate lines of
development that can later be merged back.

Git – also possible for Infrastructure

Infrastructure as Code (IaC)
As teams began defining infrastructure in code, it became logical to store this code in Git

Immutable Infrastructure
The rise of immutable infrastructure—where servers are replaced rather than modified—means
deployments rely on fixed configurations that need to be consistently defined and tracked

Microservices
Microservices architecture, with its many independent, modular components, requires precise
management of each service’s configuration

Agility and Speed
Infrastructure teams need to keep up with fast-paced changes, including frequent deployments
and iterative improvements.

What is GitOps?

GitOps

Declarative
Configuration (IaC)

Versioning (Git) Automation
via CI/CD

GitOps – Declarative Configuration

Declarative
Configuration (IaC)

• Definition of desired end state of infrastructure

• Consistent & predictable

• Transparent & human readable

• Reproducibility and Immutable

GitOps – Declarative Configuration

GitOps – Declarative Configuration

GitOps - Versioning

Versioning (Git)

• Single point of view

• History & Auditability

• Collaboration via branches and reviews

• Disaster Recovery & Rollback

GitOps – Automation

Automation
via CI/CD

• Compliance and security

• Automated testing after deployment

• Controlled way & reproducible

• Notification about the rollout state

GitOps – Automation

Demo GitOps

GitOps – Benefits & Challenges

• Benefits
- Disaster Recovery & Rollback

- Visibility of state

- Auditing/Security

- Reconciliation

• Challenges
- Slightly more overhead

- Higher complexity

- Steep learning curve

GitOps – Conclusion

• Highly effective in containerized and microservices environments

• Ease complexities by centralizing configuration

• Enhanced Security and Compliance

• Consistent and automated deployments regardless of the underlying platform

Questions ?

• Bachelor- / Master theses
• Cloud Native Engineer
• Cloud Native Consultant
• DevOps Engineer
• Kubernetes Engineer
• Site Reliability Engineer

Claranet, a place for talented people, partner-
like customers, collaborative culture, personal
growth, innovative technologies, vibrant
international community

Wanna join the Cloud Native movement?

Check out https://www.claranet.de/jobs

https://www.claranet.de/jobs

